Learn R Programming

fields (version 8.4-1)

fields internal: Fields internal and secondary functions

Description

Listed below are supporting functions for the major methods in fields.

Usage

Krig.df.to.lambda(df, D, guess = 1, tol = 1e-05) Krig.fdf (llam, info) Krig.fgcv (lam, obj) Krig.fgcv.model (lam, obj) Krig.fgcv.one (lam, obj) Krig.flplike (lambda, obj) Krig.fs2hat (lam, obj) Krig.ftrace (lam, D) Krig.parameters (obj, mle.calc=obj$mle.calc) Krig.updateY (out, Y, verbose = FALSE, yM=NA) Krig.which.lambda(out) Krig.ynew (out, y=NULL, yM=NULL )
bisection.search (x1, x2, f, tol = 1e-07, niter = 25, f.extra =  NA, upcross.level = 0) cat.matrix (mat, digits = 8) cat.to.list (x, a) ceiling2 (m) describe (x)
double.exp(x)
dyadic.2check( m,n,cut.p=2) dyadic.check( n,cut.p=2)
Exp.earth.cov (x1, x2, theta = 1) fast.1way (lev, y, w = rep(1, length(y))) find.upcross (fun, fun.info, upcross.level = 0, guess = 1, tol =  1e-05) gauss.cov (...)
golden.section.search (ax, bx, cx, f, niter = 25, f.extra = NA, tol = 1e-05, gridx=NA) imagePlotInfo (...,breaks, nlevel) imageplot.info(...) imageplot.setup(x, add=FALSE, legend.shrink = 0.9, legend.width = 1, horizontal = FALSE, legend.mar=NULL, bigplot = NULL, smallplot = NULL,...)
makeSimulationGrid(mKrigObject, predictionPoints, nx, ny, nxSimulation, nySimulation, gridRefinement, gridExpansion) makeSimulationGrid2 (fastTpsObject, predictionPointsList, gridRefinement, gridExpansion)
minimax.crit (obj, des = TRUE, R)
"plot"(x,...) "predict"(object, loc,...)
"predict"(object, ...) "predict"(object, ...)
"print" (x,...) "print"(x, ...) "print" (x, ...) "print" (x, ...) "print" (x, digits = 4,...) "print" (x, ...) printGCVWarnings( Table, method = "all") makePredictionPoints(mKrigObject, nx, ny, predictionPointsList)
multWendlandGrid( grid.list,center, delta, coef, xy = c(1, 2))
qr.q2ty (qr, y) qr.yq2 (qr, y) "plot"(x, pch = "*", main = NA,...) "predict"(object, x, derivative = 0, model = object$ind.cv.ps,...) "print" (x, ...) qsreg.fit (x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.psi( r,alpha=.5,C=1) qsreg.rho( r,alpha=.5,C=1) qsreg.trace(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.rho.OLD(r, alpha = 0.5, C = 1) qsreg.psi.OLD(r, alpha = 0.5, C = 1)
quickPrint(obj, max.values = 10)
"summary" (object, ...)
radbas.constant (m, d) sreg.df.to.lambda (df, x, wt, guess = 1, tol = 1e-05) sreg.fdf (h, info) sreg.fgcv (lam, obj) sreg.fgcv.model (lam, obj) sreg.fgcv.one (lam, obj) sreg.fit (lam, obj, verbose=FALSE) sreg.fs2hat (lam, obj) sreg.trace (h, info)
summaryGCV.Krig(object, lambda, cost = 1, verbose = FALSE, offset = 0, y = NULL, ...) summaryGCV.sreg (object, lambda, cost = 1, nstep.cv = 20, offset = 0, verbose = TRUE,...)
"summary" (object, digits = 4, ...) "summary" (object, digits = 4, ...)
surface(object , ...) "surface" (object, ...)
unscale (x, x.center, x.scale)
MLESpatialProcess.fast(x, y, lambda.start = NULL, theta.start = NULL, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), relative.tolerance = 0.001, Distance = "rdist", verbose = FALSE, ...)

Arguments